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Abstract. The development of image interpretation systems is concerned with
tricky problems such as a limited number of observations, environmental
influence, and noise. Recent systems lack robustness, accuracy, and flexibility.
The introduction of case-based reasoning (CBR) strategies can help to
overcome these drawbacks. The special type of information (i.e., images) and
the problems mentioned above provide special requirements for CBR strategies.
In this paper we review what has been achieved so far and research topics
concerned with case-based image interpretation. We introduce a new approach
for an image interpretation system and review its components.

1 Introduction

Image interpretation systems are becoming increasingly popular in medical and
industrial applications. The existing statistical and knowledge-based techniques lack
robustness, accuracy, and flexibility. New strategies are necessary that can adapt to
changing environmental conditions, user needs and process requirements. Introducing
case-based reasoning (CBR) strategies into image interpretation systems can satisfy
these requirements. CBR provides a flexible and powerful method for controlling the
image processing process in all phases of an image interpretation system to derive
information of the highest possible quality. Beyond this CBR offers different learning
capabilities, for all phases of an image interpretation system, that satisfy different
needs during the development process of an image interpretation system. Therefore,
they are especially appropriate for image interpretation.

Although all this has been demonstrated in various applications [1]-[6][35], case-
based image interpretation systems are still not well established in the computer
vision community. One reason might be that CBR is not very well known within this
community. Also, some relevant activities have been shied away from developing
large complex systems in favor of developing special algorithms for well-constrained
tasks (e.g., texture, motion, or shape recognition). In this paper, we will show that a
CBR framework can be used to overcome the modeling burden usually associated
with the development of image interpretation systems.



We seek to increase attention for this area and the special needs that image
processing tasks require. We will review current activities on image interpretation and
describe our work on a comprehensive case-based image interpretation system.

In Section 2, we will introduce the tasks involved when interpreting an image,
showing that they require knowledge sources ranging from numerical representations
to sub-symbolic and symbolic representations. Different kinds of knowledge sources
need different kinds of processing operators and representations, and their integration
places special challenges on the system developer.

In Section 3, we will describe the special needs of an image interpretation system
and how they are related to CBR topics. Then, we will describe in Section 4 the case
representations possible for image information. Similarity measures strongly depend
on the chosen image representation. We will overview what kinds of similarity
measures are useful and what are the open research topics in Section 5.  In Section 6,
we will describe our approach for a comprehensive CBR system for image
interpretation and what has been achieved so far. Finally, we offer conclusions based
on our CBR systems working in real-world environments.

2 Tasks an Image Interpretation System Must Solve

Image interpretation is the process of mapping the numerical representation of an
image into a logical representation such as suitable for scene description. An image
interpretation system must be able to extract symbolic features from the pixels of an
image (e.g., irregular structure inside the nodule, area of calcification, and sharp
margin). This is a complex process; the image passes through several general
processing steps until the final symbolic description is obtained.  These include image
preprocessing, image segmentation, image analysis, and image interpretation (see
Figure 1). Interdisciplinary knowledge from image processing, syntactical and
statistical pattern recognition, and artificial intelligence is required to build such
systems. The primitive (low-level) image features will be extracted at the lowest level
of an image interpretation system. Therefore, the image matrix acquired by the image
acquisition component must first undergo image pre-processing to remove noise,
restore distortions, undergo smoothing, and sharpen object contours. In the next step,
objects of interest are distinguished from background and uninteresting objects, which
are removed from the image matrix.

In the x-ray computed tomography (CT) image shown in Figure 1, the skull and the
head shell is removed from the image in a preprocessing step. Afterwards, the
resulting image is partitioned into objects such as brain and liquor. After having found
the objects of interest in an image, we can then describe the objects using primitive
image features. Depending on the particular objects and focus of interest, these
features can be lines, edges, ribbon, etc.  A geometric object such as a block will be
described, for example, by lines and edges. The objects in the ultrasonic image shown
in Figure 1 are described by regions and their spatial relation to each other. The
region’s features could include size, shape, or the gray level. Typically, these low-
level features have to be mapped to high-level features. A symbolic feature such as
fuzzy margin will be a function of several low-level features. Lines and edges will be



grouped together by perceptual criteria such as collinearity and continuity in order to
describe a block.

Fig. 1. Architecture of an Image Interpretation System

Image classification is usually referred to as the mapping of numeric features to
predefined classes. Sometimes image interpretation requires only image classification.  
However, image classification is frequently only a first step of image interpretation.
Low-level features or part of the object description are used to classify the object into
different object classes in order to reduce the complexity of the search space. The
image interpretation component identifies an object by finding the object that it
belongs to (among the models of the object class). This is done by matching the



symbolic description of the object in the scene to the model of the object stored in the
knowledge base. When processing an image using an image interpretation system, an
image’s content is transformed into multiple representations that reflect different
abstraction levels. This incrementally removes unnecessary detail from the image.
The highest abstraction level will be reached after grouping the image’s features. It is
a product of mapping the image pixels contained in the image matrix into a logical
structure. This higher level representation ensures that the image interpretation
process will not be affected by noise appearing during image acquisition, and it also
provides an understanding of the image’s content.  A bottom-up control structure is
shown for the generic system in Figure 1. This control structure allows no feedback to
preceding processing components if the result of the outcome of the current
component is unsatisfactory. A mixture of bottom-up and top-down control would
allow the outcome of a component to be refined by returning to previous component.

3 Development Concerns

Several factors influence the quality of the final result of an image interpretation
system, including environmental conditions, the selected imaging device, noise, the
number of observations from the task domain, and the chosen part of the task domain.
These cannot often all be accounted for during system development, and many of
them will only be discovered during system execution.  Furthermore, the task domain
cannot even be guaranteed to be limited. For example, in defect classification for
industrial tasks, new defects may occur because the manufacturing tool that had been
used for a long period suddenly causes scratches on the surface of the manufactured
part. In optical character recognition, imaging defects (e.g., heavy print, light print, or
stray marks) can occur and influence the recognition results. Rice et al. [7] attempted
to systematically overview the factors that influence the result of an optical character
recognition system, and how different systems respond to them. However, it is not yet
possible to observe all real-world influences, nor provide a sufficiently large enough
sample set for system development and testing.

A robust image interpretation system must be able to deal with such influences. It
must have intelligent strategies on all levels of an image interpretation system that can
adapt the processing components to these new requirements. A strategy that seems to
satisfy these requirements could be case-based reasoning. CBR does not rely on a
well-formulated domain theory, which is, as we have seen, often difficult to acquire.

This suggests that we must consider different aspects during system development
that are frequently studied CBR issues. Because we expect users will discover new
aspects of the environment and the objects during system usage, an automatic image
interpretation system should be able to incrementally update the system’s model, as
illustrated in Figure 2. This requires knowledge maintenance and learning. The
designated lifetime of a case also plays an important role. Other aspects are concerned
with system competence. The range of target problems that a given system or
algorithm can solve are often not quite clear to the developer of the image
interpretation system. Often researchers present to the community a new algorithm
that can, for example, recognize the shape of an object in a particular image and then



claim that they have developed a model. Unfortunately, all too often another
researcher inputs a different image to the same algorithm and finds that it fails. Did
the first researcher develop a model or did they instead develop a function?  Testing
and evaluation of algorithms and systems is an important problem in computer vision
[8], as is designing the algorithm’s control structure so that it fits best to the current
problem. CBR strategies can help to solve this problem in computer vision.

      

Fig. 2. Model Development Process

4 Case Representations for Images

Usually the main types of information concerned with image interpretation are image-
related and non-image-related information. Image-related information can be the 1D,
2D, or 3D images of the desired application, while non-image-related information can
include information about image acquisition (e.g., the type and parameters of the
sensor, information about the objects, or the illumination of the scene). The type of
application determines what type of information should be considered for image
interpretation.  For medical CT image segmentation [3], we used patient-specific
parameters such as age, sex, slice thickness, and number of slices. Jarmulak [1]
considered the type of sensor for a railway inspection application and his system used
it to control the type of case base that the system used during reasoning.

How the 2D or 3D image matrix is represented depends on the application the
developer’s point of view.  In principle it is possible to represent an image using one
of the abstraction levels described in Section 2. An image may be described by the
pixel matrix itself or by parts of this matrix (a pixel representation). It may be



described by the objects contained in the image and their features (a feature-based
representation). Furthermore, it can be described by a more complex model of the
image scene comprising objects and their features as well as the object’s spatial
relationships (an attributed graph representation or semantic network).

As mentioned earlier, processing the image through multiple components and
describing it by higher-level representations can reduce the number unnecessary
details in its representation. This allows more noise tolerance and may speed up the
retrieval process but may require additional modeling of the image content, which is
difficult and time-consuming. Also, it requires processing steps that are often
computationally intensive. Thus, the necessary abstraction level of the image
information should be carefully chosen.

Jarmulak [1] solved this problem by using a four-level case hierarchy and different
case bases for different sensor types. Stored at the lowest level of the hierarchy are the
objects described by features such as their location, orientation, and type (line,
parabola, or noise) parameters. The next level consists of objects of the same channel
within the same subcluster.  In the following level the subcluster is stored and the
highest level stores the entire image scene. This representation allows cases to be
matched on different granularity levels. Because the entire scene may have noise
distortions and imprecise measurements, the influence of noise can be reduced by
retrieving cases on these different levels.

Grimnes and Aamodt [2] developed a model-based system for the interpretation of
abdominal CT images. The image’s content was represented by a semantic network
where concepts can be a general concept, a case, or a heuristic rule. Poorly understood
parts of the model are expressed by cases and can be revised during system usage by
the learning component. The combination of a partial well-understood model with
cases helps to overcome the usual burden of modeling. The learning component is
based on failure-driven learning and case integration. Non-image information is also
stored such as sex, age, earlier diagnosis, and social condition.

In both of these systems, CBR is used only for the high-level component. We have
studied different approaches for the different processing stages of an image
interpretation system. For image segmentation [1], we studied a pixel-based approach
and also a feature-based approach that described an image’s statistical properties. Our
results show that the pixel-based approach can yield better image segmentation.  For
the high-level approach in an ultra sonic image interpretation system, we used a graph
representation [9].

 Micarelli et al. [4] have also calculated image properties from images and stored
them into a case base. They used the Wavelet transform because it is scale-
independent, but this limits their similarity measure to consider only object rotation.

Representing images at multiple levels of abstraction presents some technical
challenges. When representing an image with a high-level abstraction rather than the
image matrix itself, some information will be lost. Abstraction requires deciding
which details of an image are necessary. If only some objects are seen at one time,
then we might think that one detail is not of interest since our decision is based on a
limited number of objects. This can cause problems. Therefore, storing the images
themselves is always preferable but requires high storage capacity. Also, the different
representations at each abstraction level require different similarity measures.



5 Similarity Measures for Image Interpretation

Images can be rotated, translated, different in scale, or may have different contrast
and energy yet still considered to be similar. In contrast, two images may be
dissimilar because the object in one image is rotated by 180 degrees.  The concept of
invariance in image interpretation is closely related to that of similarity. A good
similarity measure should take this into consideration.

Classical similarity measures do not consider invariance. Usually, the images or
the features have to be pre-processed in order to be adapted to the scale, orientation,
or shift.  This process is an additional and expensive processing step that needs some
a priori information, which is not always given. Matched, linear, Fourier, and Wavelet
filters are especially useful for invariance under translation and rotation [4]. There has
been a lot of work done to develop such filters for image interpretation.  The best way
to achieve scale invariance from an image is by means of invariant moments, which
can also be invariant under rotation and other distortions. Some additional invariance
can be obtained by normalization (to reduce the influence of energy).

Depending on the image representation (see Figure 3) we can divide similarity
measures into:

1. pixel (Iconic)-matrix similarity measures;
2. similarity measures for comparing strings;
3. feature-based similarity measures (numeric, symbolic, or mixed type); and,
4. structural similarity measures.

(18),(19),(13),(17),(21),(16)
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Fig. 3. Image Representation and Similarity Measures

Because a CBR image interpretation system must also account for non-image
information (e.g., about the environment or the objects), similarity measures are
needed that can combine non-image with image information. In [10], we described a
first approach for doing this.



Systematic studies on image similarity have been conducted by Zamperoni and
Starovoitov [11]. They studied how pixel-matrix similarity measures behave under
different real-world influences such as translation, noise (spikes, salt and pepper
noise), and different contrast. Image feature-based similarity measures have been
studied from a broader perspective by Santini and Jain [12]. To our knowledge, these
are the only comprehensive studies on image similarity. Otherwise, every new
conference on pattern recognition contains proposals for new similarity measures for
specific purposes and different kinds of image representation [13]-[23]. While there
was some simultaneous research on image similarity in the CBR community (e.g.,
[24]), this work has also not achieved new insight.  In our view, images are a special
type of information source that require special similarity measures, and these
measures require more rigorous analysis.

6 A Case-Based Image Interpretation System

We proposed an architecture (Figure 5) that uses CBR on all levels of an image
interpretation system in [9]. The system subdivides into a run-time part and a
maintenance and learning part. During run-time, the system uses CBR strategies to
reason over images while the maintenance and learning part attempt to improve
system performance off-line. We are further developing this system based on an
application that is called HEp-2 cell image analysis [25] (Figure 4). This kind of cell
is used to identify antinuclear autoantibodies (ANA) . HEp-2 cells can recognize over
30 different nuclear and cytoplasmatic patterns, which are given by upwards of 100
different autoantibodies. This exemplifies the difficulty with this application. We
have to recognize a large number of different patterns that are neither well described
nor fixed in number. Furthermore, we cannot exclude the possibility of new patterns
occurring.

Fig. 4. Some Example Images of HEp-2 Cells

6.1 Image Segmentation

Most CBR image interpretation systems (e.g., [2][6]) select among different image
processing chains but they do not control the algorithm itself. This in accordance with
most knowledge-based image interpretation systems described in the computer vision
literature, which select a processing chain that best fits the current image analysis



problem. This approach requires a large enough library of image processing
procedures and special image processing knowledge.

Runtime Learning
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Fig. 5. Architecture of a Case-Based Image Interpretation System

However, modern segmentation techniques contain numerous control parameters,
which can be adjusted to obtain optimal performance. Parameter selection should be
done using a sufficiently large test data set that represents the entire domain well
enough to support a general segmentation model. However, obtaining a suitable test
set is often impossible, which means that the segmentation model does not fit the data
well and must be adjusted to new data.  Also, a general model does not guarantee the
best segmentation for each image, but instead it guarantees an average best fit over
the entire set of images. Finally, differing image quality (e.g., caused by variations in
environmental conditions, image devices) requires adapting the segmentation process
accordingly. This necessitates equipping the segmentation component with learning
capabilities, which can incrementally acquire segmentation model knowledge.
We use a case-based approach for parameter learning, in which formerly processed
cases contain their original images, their non-image information (e.g., image
acquisition parameters, object characteristics), and their image segmentation
parameters. Finding the best segmentation for the current image is done by retrieving
similar cases from the case base. Similarity is computed using non-image and image
information.  The evaluation component will use the most similar case for further
processing.  If two or more cases have the same highest similarity score then the first
of these cases is used. The image segmentation parameter associated with the selected
case will then be given to the image segmentation component, which will segment the
current image (see Figure 6).  Images with similar image characteristics are assumed
to yield similar good segmentation results when the same segmentation parameters
were applied to these images.  Superior performance for this approach has been
demonstrated for CT image segmentation [3]. This approach is sufficiently flexible to
be used for other applications and will therefore be used for Hep-2 cell image
analysis.
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Fig. 6. Case-Based Image Segmentation Component

6.2 Feature Selection

Feature selection is concerned with learning the most important (symbolic) features,
while feature extraction is responsible for locating those features in the image and
finding their values. From the preprocessed, segmented, and labeled 1-D, 2-D, or 3-D
image matrix we can extract low-level or primitive image features that are corners,
extended edges, textured regions, ribbons, the 2 1/2-D sketch, and semantic clusters
of edges and regions. The number of primitive features that can be extracted from the
image content is limited (e.g., color, gray level, spatial relations, motion).
Understanding the image’s content requires mapping those primitives to the desired
symbolic features. In current approaches to image interpretation, performance
degrades when new objects are encountered that may require the extraction of “shape
primitives” not known to the system. To overcome the bottleneck of predetermined
and static object features, automatic acquisition of new features using a learning
approach is necessary, particularly for flexible image interpretation processes.

Therefore, we introduced for our system a library of feature extractors that can
calculate all possible features. In the next step, the system selects from these features
the necessary features describing the desired symbolic feature.

6.3 Signal-to-Symbol Mapping and Feature Selection

It is seldom the case that one low-level feature describes the right meaning of one
quality of an object. Often a combination of a few low-level features is necessary to
express a symbolic feature like fine speckled, which is a combination of low-level
features such as number of small objects, object sizes, and their gray-level.  In these
situations, a mapping of (n) low-level features to the symbolic feature is needed. This
problem is concerned with the selection of the right features (feature selection), their
parameters, and the creation of a mapping function (classification function).

The problem here is to select this subset of features from a large/complex feature
set that represent best the symbolic feature by means of classification accuracy or
intra/inter class distance, see Fig. 7. To solve this problem, we use an induced



decision tree [26]. This approach acts as feature filter for the image interpretation
process. Once a new feature is discovered the low-level features are calculated from
the image and labeled by the symbolic feature. The prototypes of the other features
are taken and applied together with data from the new feature to the induction
algorithm. The resulting set of rules are used as a feature selector.
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Fig. 7. Low-Level Feature Selection and Mapping to Symbolic Features

6.4 Image Interpretation

The case representation of an image’s high-level information can differ among
images. This ranges among semantic networks, graphs, and decision trees. Image
interpretation problems always have some hidden taxonomy that, if discovered, can
be used to help model the problem. An ultrasonic image showing a defect type crack
might show a crack of a specific subclass such as crack_under_pressure_x. To
classify this type of crack as a specific subtype might prevent the class crack from
having large variations, which can help to improve classification results.

To discover these concepts we have found decision tree induction [26] and
incremental conceptual clustering [27][36] very suitable. Based on the available cases
we used C4.5 to induce a tree for indexing the case base. Our approach differs from ’s
[1], who also induced a tree for case indexing, in that we will incrementally update
the tree structure based on newly discovered cases.  Leaves in the tree where no class
overlap occurs will remain as terminal leaves, while a leaf with class overlap will be
pruned back until a predefined number of samples remain in the group covered by this
leaf.

The query case may be clustered through the tree until it reaches a leaf node. If the
leaf node is labeled with its class, then that class is assigned to the query. If it not a
final node then similarity will be calculated between all cases belonging to this node.
We do not divide these cases into clusters but instead incrementally update the index
structure when entering a new case.



7 Maintenance & Learning

An important focus of recent CBR research is on how to develop strategies for
obtaining compact, competent case-bases, as a way to improve the performance of
CBR systems [28]. Although maintenance approaches have not yet been extensively
studied for image interpretation systems, they will play an important. Grimnes and
Aamodt [2] mention that maintaining the case base in ImageCreek is complex, and
that knowledge base maintenance methods are crucial for making the architecture
scale.  The main problem is handling the different types of knowledge. Jarmulak [1]
takes into account case addition, splits the clusters into groups of fixed size, and
represents them using a prototype to speed up the matching process. Perner [3][9]
takes into account case addition, learning of case classes and prototypes, and higher
order constructs. We focus here on topics that, until now, have only been addressed as
more specific problems.

7.1 Case Addition and Case Deletion

Case deletion in a pre-determined time window based on failure results [29] might not
be appropriate for image interpretation because a failure might mean that, instead of
the retrieved case being erroneous, there is some relevant knowledge that we could
not describe using features. Also, cases that occur infrequently (i.e., that have not
been used recently) should be recognized by the system.

The causes for case deletion or addition might differ from other CBR applications:

1. Since images may be distorted and very noisy it might not be useful to store
distorted representations. Determining which representation is distorted is
sometimes not easy even if you have seen only a few images, and it is usually
necessary to have domain knowledge that must also be built up over time.

2. Imprecise or noisy measurements can be caused by some defects of illumination,
the image acquisition device, or the object itself. If the image analysis cannot adapt
to these measurements, or the reasoning process cannot handle it, then this might
cause failure results.  However, if this is a systematic event then it might be
worthwhile to store the recent case in the case base.

3. The last fact comes from the real world environment. It is not possible to determine
all real world influences a priori.

Thus, developers prefer to incorporate cases into a case base instead of forgetting
them. Although case bases can grow very large, instead of forgetting cases, we would
rather subdivide the case base into frequently vs. rarely used cases. This requires
addressing the issue of how should the addition of cases into one of these two case
bases be controlled, as well as their respective reasoning processes.



7.2 Case Acquisition Tool

A CBR system for image classification needs to have some particular features with
respect to images. These features result from:
− special requirements of visual knowledge acquisition (image-language problem)

and
− the need to transform an image’s numerical data into a symbolic description.
The main problem with images and their translation into a language is that the
knowledge about an image is usually tacit. To make this knowledge explicit is often
hard.  Sometimes the meaning of a word does not correspond to the correct meaning
of the image.  Therefore, it is necessary to support the operator in an efficient way.

Most case-based image interpretation systems do not pay attention to this problem.
The only functionality these systems provide is visualization of the image or the
processed image. Usually, new case knowledge is obtained via manual acquisition
with the expert. This is a time-consuming and sometimes boring process for both the
system developer and the expert.

A CBR system for image interpretation should have a special case acquisition tool,
such as the one detailed in [30]. By using a questioning strategy and evaluating the
answers given by the expert, the expert or operator is forced to specify the right
knowledge for image interpretation. The questioning strategy is designed to force an
expert to explain what distinguishes one object from another and to specify the right
property for the object.

Recently, this problem has received attention for e-commerce applications.
Automatic questioning strategies are important for acquiring customer requirements
in e-commerce applications [31] because the customer acts alone on the net.

A special case acquisition tool for image segmentation was described in [3]. With
the help of this tool the user can control the parameters of the image segmentation
algorithm. Simultaneously, he can view the segmented image and, if he is satisfied
with the segmentation quality, he can store the parameters of the image segmentation
algorithm together with the case description in the case base.

7.3 Competence of Case Bases

An important problem in image interpretation concerns system competence. We
follow the definition in [32] and define the competence of a system as the range of
target problems the system can solve.  As we have already pointed out in Section 3 it
is often not clear to the computer vision community what problems the desired
algorithm can solve. So we have to find a way to describe the competence of a
system. This differs from what is usually understood about this problem in CBR.
Competence is described based on statistical properties such as case-base size, density
and distribution, or group coverage and group density. But what if some groups
overlap? Smyth and McKenna [32] argue that these groups have shared competence
and can be linked together in some way. However, we can also view it as having a
poor description of the target problem.  Based on this description we may retrieve a
similar case but its solution application to the query image may be low in quality.  By
investigating the failure we may learn that we did not consider a property of the



environment or maybe we could not specify it because it was not contained in the
description of the target problem. Therefore, the system performance decreases. The
measures described in [32] and [33] only view competence based on the coverage of
the problem space. How do we know that cases in group 1 and group 2 belong to the
same target problem group?  Proximity in problem space does not imply that they
belong to the same problem group; misclassifications can occur because the patterns
overlap. We argue that system competence must also account for the misclassification
of the target problem based on the problem description.

7.4 Control Strategies and Monitoring System Performance

An important issue in maintaining an image interpretation system involves the
controlling and monitoring of system performance. The system is a complex system
comprising different processing components (e.g., image analysis, feature extraction
and high-level image interpretation). The quality of the results of one component
strongly depends on the quality of a preceding component.  Several possible strategies
exist for improving system performance.

Control without Feedback (Local Optimization)

The simplest approach is to adjust the performance of each component without
considering the others. Each component - segmentation, feature extraction and
selection, and interpretation - acts alone. No interaction between them is allowed.
Image segmentation performance may be determined by subjective evaluation of the
segmentation result as done by an expert, by calculating the similarity between the
original and segmented images, by interclass distances for feature extraction, or by
classification error. This strategy has the advantage that the control of the system is
simple. Nevertheless, it cannot optimize system performance because only local
optimums can be achieved for each single component.

Control with Feedback (Global Optimization)

If after local optimization the performance of a component could not be improved or
is not satisfactory, the control algorithm will lead the learning process to the
preceding processing component in an attempt to further improve its performance.
This process stops if the first processing component is reached and if no improvement
could be established after local optimization.

The logical scheme in Table 1 shows us how control is guided.  If the performance
of all components is good, no action has to be taken. If the interpretation component’s
performance is poor, then its performance needs to be optimized. We assume that it is
impossible for a preceding component to perform poorly while its successor
components perform well.



8. Conclusion

We surveyed special topics associated with a case-based image interpretation system.
From our point of view case-based image interpretation differs in many aspects from
other CBR applications that require further investigation. First, more systematic work
on special image similarity measures is needed that investigates the measures under
different influences that may occur in an image. Next, case representations are
required for all the different abstraction levels of an image. Finally, the maintenance
and learning strategies must be defined so that they can help to improve the system
performance and discover the range of target problems that the system can solve.

We have recently deployed two CBR image interpretation systems. One is installed
at the university hospital in Halle; it is used for image segmentation to determine the
brain/liquor ratio of the head in a CT image. The second system is used to interpret
ultra-sonic SAFT images. In both applications the CBR strategies we used achieved
good system performance that satisfied the users and outperformed other systems.
The learning and maintenance facilities installed to date have been particularly well-
received.

In summary, we believe that investigations of case-based image interpretation
systems can reveal special challenges to both the CBR and computer vision
communities, and encourage more people to work on this topic.

Table 1 Logical Scheme of Performance Control
Segmentation (S) Feature Extraction (FE) Interpretation (I) Action
Good Good Good No Action
Good Good Poor Optimize I
Good Poor Good Impossible
Good Poor Poor Optimize FE and

examine effects on I
Poor Good Good Impossible
Poor Good Poor Impossible
Poor Poor Good Impossible
Poor Poor Poor Optimize S, then

re-examine the
performance of the
other components
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